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Binary collision model for quantum Brownian motion

Stefan Tsonchev* and Philip Pechukas
Department of Chemistry, Columbia University, New York, New York 10027

~Received 18 November 1999!

A binary collision model for phenomena of quantum dissipation is developed. Unlike the harmonic oscillator
model, widely used for over thirty years, this model assumes nonlinear coupling between system and environ-
ment, and is applicable to both bosonic and fermionic baths. The system interacts with an ideal bath through
binary collisions only. Solutions for the classical and quantum-mechanical problems in the case of free Brown-
ian motion are presented, and the quantum-classical correspondence for nonequilibrium processes is estab-
lished. It is shown that in the Brownian motion limit the two models lead to identical dynamical behavior,
provided the coupling coefficients in the harmonic oscillator Hamiltonian are temperature dependent. For cases
of bath particles of finite mass and number the two models lead to different results. Linear response theory for
the model is developed, and the results are compared with those for the harmonic oscillator model. At the end,
possible applications of the model are suggested.

PACS number~s!: 05.40.Jc, 05.30.2d
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I. INTRODUCTION

The theory of open quantum systems and quantum d
pation phenomena is, and has been for several decad
major area of research in physics and chemistry. Most o
researchers are interested in an open system with a s
number of degrees of freedom in contact with a ‘‘bath’’ of
complex nature, whose number of degrees of freedom te
to infinity. The open system is interacting with its enviro
ment, and its properties and evolution are strongly affec
by the interaction. The problem is to find a relatively simp
and tractable way to account for the influence of the en
ronment on the open system and to derive an equation fo
reduced dynamics of the system.

The simplest dissipative process, Brownian motion~BM!,
has received much attention from both chemists and ph
cists, especially from researchers working on reaction
theory. Physicists’ interest in this process comes in conn
tion with macroscopic dissipative tunneling, while chemi
are mostly interested in studies of condensed phase rea
dynamics. The classical theory of BM is well understoo
The process can be described by the Langevin equation

MẌ1hẊ1V8~X!5F~ t !, ~1!

which describes, say, a colloidal particle of massM im-
mersed in a viscous fluid.h is the damping constant,V the
potential acting on the particle, andF(t) the fluctuating
force, a Gaussian random process with

^F~ t !&50, ~2!

^F~ t !F~ t8!&52hkTd~ t2t8!. ~3!

Equivalently, one can use the Fokker-Plank equation, wh
in the case ofV50 reads
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]~rẊ!

]X
1

]~r Ṗ!

]P
5hkT

]2r

]P2
~4!

with

Ẋ5
P

M
, Ṗ52

hP

M
, ~5!

and describes the relaxation to equilibrium of the pha
space densityr of the Brownian particle.

The two equations above are valid in the classical regim
If we observe the reaction rate of some process at low t
perature, however, quantum tunneling affects the rate,
the classical description is inadequate@1#. The question is,
how to describe BM in quantum mechanics?

Over the last thirty years there have been many attem
to solve this problem, most of them unsatisfactory for o
reason or another. Kostin’s approach violated the superp
tion principle@2#. Various authors obtained a kind of ‘‘quan
tum Langevin equation’’@3,4# valid for the special case of a
harmonic oscillator. Others used a time-dependent mass@5,6#
but this approach is not consistent with the uncertainty p
ciple @7#. A canonical quantization procedure for comple
variables was proposed by Dekker@8#, who artificially intro-
duced noise sources in the equations, which is question
too. The master equation of Oppenheim and Romero-Roc
@9# has many nice features, but leads to negative probabil
@10# and therefore is not completely satisfactory.

The most successful approach to the problem of quan
BM so far is based on the so called harmonic oscillator~HO!
or Caldeira-Leggett model, which treats the Brownian p
ticle as a point mass interacting with an infinite collection
harmonic oscillators of various frequencies@11–15#. This
method has several precursors in the literature@3,16#. The
Hamiltonian of the composite system is

Ĥ5ĤS1ĤR1ĤI , ~6!

where
-
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ĤS5
P̂2

2M
1V̂~X̂! ~7!

is the Hamiltonian of the isolated system,

ĤR5(
i 51

N
1

2
S p̂i

2

mi
1miv i

2q̂i
2D ~8!

describes the reservoir ofN harmonic oscillators, and

ĤI52(
i 51

N

F̂i~X̂!q̂i1nV̂~X̂! ~9!

is the interaction term. The termnV̂ is added to compensat
for frequency-renormalization effects induced by the fi
term in the expression forĤI . Usually, for simplicity, a bi-
linear system-reservoir coupling is imposed, that is, in E
~9!

F̂ i~X̂!5ciX̂. ~10!

The HO model for quantum BM can be used to model qu
tum dissipation phenomena through ‘‘quantum Lange
equations’’ for the momentum operator of the Brownian p
ticle, or by employing the functional integral approach f
deriving the reduced density operator of the system. An
haustive review of work done with this model is given b
Weiss@15#, and for quantum reaction rate theory in@1#.

In this paper we develop a binary collision model f
quantum BM and the phenomena of quantum dissipatio
model that does not assume linear system-reservoir coup
is applicable to both bosonic and fermionic baths, and or
nates in a somewhat more physical picture of BM: a he
particle moves through an ideal gas of light particles, ex
riencing instantaneous uncorrelated binary collisions w
them. In Sec. II we present the model. In Sec. III we sh
that the model leads to the well known process of BM
classical mechanics, while two solutions for the quant
problem are presented in Sec. IV. Section V develops lin
response theory for the model and establishes the corres
dence between this model and the HO model. In Sec. VI
discuss possible applications of the model and conclu
Some formal derivations are given in Appendixes A and

II. BINARY COLLISION MODEL

A Brownian particle of massM, immersed in an ideal ga
of bath particles, interacts with the bath through binary c
lisions. These are not quite standard binary collisions;
Hamiltonian we use for the model, which is one dimension
is this:

Ĥ5
P̂2

2M
1(

i 51

N
\v i

2
~ei2pi X̂/\a2 i

† ai1e2 i2pi X̂/\ai
†a2 i !

1(
i 51

N

e i~ai
†ai1a2 i

† a2 i !. ~11!

HereP̂ andX̂ are the momentum and coordinate operators
the Brownian particle,pi—a scalar, not an operator—is th
t

.

-
n
-

x-

a
g,
i-
y
-

h

ar
on-
e
e.
.

l-
e
l,

f

momentum of thei th bath particle,ai
† (ai) creates~destroys!

a bath particle of momentum1pi , a2 i
† (a2 i) creates~de-

stroys! a bath particle of momentum2pi , the $v i% are col-
lision frequencies, ande i is the energy of a bath particle wit
momentum6pi ,

e i5
pi

2

2m
. ~12!

Plank’s constant\ is henceforth taken to be unity. The sam
model would describe BM in a potentialV̂(X̂) by simply
adding this term to the Hamiltonian~11!.

The Hamiltonian ~11! describes instantaneous bina
collisions—when a bath particle of momentum1pi disap-
pears, one of momentum2pi appears—and these collision
conserve momentum—the Brownian particle gains the m
mentum 2pi lost by the bath—but in these collisions the ba
neither gains nor loses energy. In each collision the mom
tum of a bath particle is simply reversed, as if the parti
had bounced off astationary Brownian particle. This is
therefore a Hamiltonian thatapproximatesthe dynamics of a
heavy particle in an ideal gas of light particles; the sma
the mass ratiom/M , the better the approximation. Neverth
less, Eq.~11! is a perfectly proper Hamiltonian in its ow
right. Energy is conserved, but when the Brownian parti
loses energy, the energy lost is stored in theinteraction.

The approach is similar to that of the Bhatnagar-Gro
Krook ~BGK! model for gas kinetics@17#, which gives a
kinetic equation simpler than the Boltzmann equation: h
also we have a model that simplifies the dynamics of a he
particle in a gas of light particles but still captures the e
sence of that dynamics, the frequent exchange of sm
amounts of momentum between heavy particle and gas.

Since the bath energy never changes, we drop the
term in Hamiltonian~11!.

The bath particles may be bosons, fermions, or a mixt
of both types. For bosons,ai andai

† satisfy

@ai ,aj #50,

@ai
† ,aj

†#50, ~13!

@ai ,aj
†#5d i j .

For fermions, the corresponding operators~we will call them
bi ’s! satisfy

$bj ,bk%50,

$bj
† ,bk

†%50, ~14!

$bj ,bk
†%5d jk .

In both cases the number operator for particles of, say,
mentum1pj is

Nj5aj
†aj . ~15!

We will cast the Hamiltonian in a different form, whic
will allow us to treat the classical and quantum equations

the time derivativeṖ̂ analogously and to use the same fo
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malism for both bosonic and fermionic baths. We use a tr
invented by Schwinger@18# ~who used it for bosonic opera
tors only!. Let

L̂x,i5
1

2
~a2 i

† ai1ai
†a2 i !,

L̂y,i5
i

2
~a2 i

† ai2ai
†a2 i !, ~16!

L̂z,i5
1

2
~ai

†ai2a2 i
† a2 i !.

It is easy to prove thatL̂x,i , L̂y,i , and L̂z,i are the compo-

nents of an angular momentumL̂W i , regardless of whether th
creation and annihilation operators describe bosons or fe
ons @19#. The L̂z,i component of the angular momentu
takes values up to (Ni1N2 i)/2, so the total angular momen
tum quantum numberLi is proportional to the total numbe
of bath particles with momentum6pi . In the fermionic case
we have

bi
†bi1b2 i

† b2 i5Ni1N2 i5constP$0,1,2%. ~17!

The caseNi1N2 i50 is trivial, as is the caseNi1N2 i52,
for then binary collisions cannot scatter a bath particle fr
1pi to 2pi or vice versa, the final states being already o
cupied. For a fermionic bath, then, we may assumeLi51/2.

Using Eqs.~16! we can write the Hamiltonian~11! in the
form

Ĥ5
P̂2

2M
1(

i 51

N

v i B̂
W

i•L̂W i , ~18!

where the vectorB̂W i is defined as

B̂W i[$cos~2piX̂!,sin~2piX̂!,0%. ~19!

The Hamiltonian~18! models a Brownian particle interactin
with angular momenta which precess around an axis de
mined by the instantaneous position of the particle. We n
show that this model Hamiltonian, in the appropriate limit,
fact generates classical BM.

III. CLASSICAL BROWNIAN MOTION

Our goal is to derive an equation forṖ, the rate of mo-
mentum change of the classical Brownian particle. We s
from the five equations of motion of the variables involv
in the classical Hamiltonian~18! ($ ,% is the Poisson
bracket!:

L̇x,i5$Lx,i ,H%5v i sin~2piX!Lz,i , ~20!

L̇y,i5$Ly,i ,H%52v i cos~2piX!Lz,i , ~21!

L̇z,i5$Lz,i ,H%5v i@cos~2piX!Ly,i2sin~2piX!Lx,i #,
~22!

Ẋ5$X,H%5
P

M
, ~23!
k

i-

-

r-
xt

rt

Ṗ5$P,H%52
]H

]X
52(

i 51

N

2v i pi

3@2sin~2piX!Lx,i1cos~2piX!Ly,i #. ~24!

Equation~24! is simply

Ṗ52(
i 51

N

2piL̇z,i . ~25!

From the definition ofLz,i @Eq. ~16!# it is evident that Eq.
~25! is nothing but an expression of conservation of mom
tum. We differentiate Eq.~22! again and obtain

L̈z,i1v i
2Lz,i522v i pi Ẋ BW i•LW i[ f i~ t !. ~26!

We formally solve the inhomogeneous Eq.~26! and calculate
L̇z,i(t), getting

L̇z,i~ t !5L̇z,i ,h~ t !1E
0

t

cos@v i~ t2t8!# f i~ t8!dt8, ~27!

with

L̇z,i ,h~ t !52v iLz,i~0!sin~v i t !1v ib cos~v i t !, ~28!

where

b5cos@2piX~0!#Ly,i~0!2sin@2piX~0!#Lx,i~0!. ~29!

Substituting Eq.~27! in Eq. ~25!, we obtain

Ṗ~ t !5E
0

tS (
i 51

N

4pi
2v iBW i•LW i~ t8!cos@v i~ t2t8!# D

3
P

M
~ t8!dt82(

i 51

N

2pi L̇z,i ,h~ t !. ~30!

This equation is exact; no approximations have been mad
looks like a generalized Langevin Equation~GLE!:

Ṗ5E
0

t

g~ t2t8!
P

M
dt81F~ t !, ~31!

with

g~ t2t8!5(
i 51

N

4pi
2v iBW i•LW i~ t8!cos@v i~ t2t8!#, ~32!

F~ t !52(
i 51

N

2pi L̇z,i ,h~ t !. ~33!

But it is not: g(t2t8) is a dynamical variable, as it contain
the BW i•LW i(t8)’s. In a proper GLEg(t2t8) should depend
only on the differencet2t8 and should not be a dynamica
variable, while the ‘‘random force’’F(t) should average to
zero and satisfy the fluctuation-dissipation theorem of
second kind,

^F~ t !&50, ~34!
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^F~ t !F~0!&52kTg~ t !. ~35!

We now find conditions under which Eq.~30! becomes a
proper GLE. First, we require that theBW i•LW i(t8)’s be essen-
tially constant in time,

BW i•LW i'const, ~36!

or

~d/dt!~BW i•LW i !nt

BW i•LW i

!1. ~37!

A simple calculation shows that the above requiremen
equivalent to the condition@19#

pi→0. ~38!

This condition can be satisfied if the bath particles have v
ishingly small mass,m→0. Then there must be many o
them:

N→`. ~39!

In that caseg(t2t8) is a sum of many terms@Eq. ~32!#, each
involving a dot productBW i•LW i , the values of which are dis
tributed according to thermal equilibrium for the bath. T
law of large numbers then implies that

g~ t2t8!'^g~ t2t8!&. ~40!

With this approximation the kernel of Eq.~30! is no longer a
dynamical variable, it is simply a function oft2t8.

Next we show that, under the same conditions,F(t) is a
proper random force. We may choose the originX(0) arbi-
trarily, so set

X~0!50. ~41!

Equations~29! and ~28! then read

b5Ly,i~0!, ~42!

L̇z,i ,h~ t !52v iLz,i~0!sin~v i t !1v iLy,i~0!cos~v i t !.
~43!

Hence,

^F~ t !&5(
i 51

N

2piv i@^Lz,i~0!&sin~v i t !2^Ly,i~0!&cos~v i t !#.

~44!

We assume a thermal initial distribution of bath angular m
menta with respect to the initial Brownian particle positio
r(0)5(1/Z)exp@2bHb(0)#, whereZ is the partition function
and

Hb~0!5(
j 51

N

v jLx, j~0!. ~45!

Then @19#
is

-

-
,

^Lz,i~0!&5^Ly,i~0!&5^Lz,i~0!Ly, j~0!&50, ; i , j ,
~46!

^Ly,i~0!Ly, j~0!&5^Ly,i
2 ~0!&d i , j , ~47!

with

^Ly,i
2 ~0!&5

Li

bv i
S coth~bv iL i !2

1

bv iL i
D , ~48!

which proves Eq.~34! and leads us to

^F~ t !F~0!&5
1

b (
i 51

N

4pi
2v iL i

3S coth~bv iL i !2
1

bv iL i
D cos~v i t !.

~49!

On the other hand, from Eq.~32! we have

^g~ t !&5(
i 51

N

4pi
2v i^BW i•LW i&cos~v i t !, ~50!

and it is easy to show@19# that in the limitpi→0

^BW i•LW i&~ t !'^BW i•LW i&~0!'Li S 1

bv iL i
2coth~bv iL i ! D ,

~51!

so that

^g~ t !&5(
i 51

N

4pi
2v iL i S 1

bv iL i
2coth~bv iL i ! D cos~v i t !.

~52!

Comparing Eqs.~49! and ~52! we verify that

^F~ t !F~0!&52kT^g~ t !&. ~53!

The BM limit, then, ispi→0, N→` @Eqs.~38! and~39!#; in
this limit—and with the bath initially in thermal equilibrium
with respect to the Brownian particle—the particle execu
BM according to a proper GLE.

Equation~30! reduces to an ordinary Langevin equatio
describing Markovian BM, if the frequencies$v i% are dis-
tributed as

r~v!5H 2uconstu

p2v^BW •LW &
if v<v f

0 otherwise,

~54!

wherev f is a high-frequency cutoff; then

^g~ t2t8!&'E
0

v f
4p2~v!v^BW •LW &~v!cos@v~ t2t8!#

3r~v!dv ——→
v f→`

2uconst8ud~ t2t8!,

~55!
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and

Ṗ52
uconst9u

M
P1F~ t !. ~56!

IV. QUANTUM BROWNIAN MOTION

We will use the functional integral approach to derive t
equilibrium reduced density operator of the dissipative s
tem, and we will derive a quantum Langevin equation for
momentum operator of the system.

A. Path integral solution for the equilibrium reduced
density matrix

We can write the Hamiltonian~18! as

Ĥ5T̂1V̂, ~57!

where

T̂5
P̂2

2M
, ~58!

V̂5(
i 51

N

v i@cos~2piX̂!L̂x,i1sin~2piX̂!L̂y,i #. ~59!

The reduced density matrix is

rX,X85^X8utrbath~e2bĤ!uX&5(
$mi %

^X8,$mi%ue2bĤuX,$mi%&,

~60!

where

u$mi%&5um1 , . . . ,mk , . . . &5um1&•••umk&•••, ~61!

and theumk& ’s are chosen to be the eigenvectors ofL̂x,k .
After a long calculation, in which the limitsp→0 and N
→` are taken, we reach the result@19#

rX,X85^X8utrbath~e2bĤ!uX&5)
k

f 1~k! lim
N→`

S NM

2pb D N/2

3E DXt expS 2E
0

b

dt
M

2
Ẋ2~t!

1E
0

bE
0

b

dt dt8 K~ ut2t8u!@X~t!2X~t8!#2D , ~62!

where

K~ ut2t8u!5(
i

pi
2v i

2

2 sinh~v ib/2!

f 2~ i !

f 1~ i !

3coshFv i S b

2
2ut2t8u D G , ~63!

with
-
e

f 1~ i !5(
mi

e2bv imi, ~64!

f 2~ i !5(
mi

mie
2bv imi. ~65!

Note that the ratiof 2 / f 1 is negative.
For the HO model@that is, the Hamiltonian~6! with Eqs.

~7!, ~8!, ~9!, and ~10!# the reduced density matrix elemen
rX,X8 obtained through the functional integral approach
of the same form as those in Eq.~62!, but with a slightly
different kernel@15#:

KHO~ ut2t8u!52(
i

ci
2

8miv i sinh~v ib/2!

3coshFv i S b

2
2ut2t8u D G . ~66!

Thus, we can make the correspondence

ci
2↔24mipi

2v i
3 f 2~ i !

f 1~ i !
. ~67!

It is clear that with a suitable choice of parameters@with the
ci ’s being functions of temperature, due to the temperat
dependence off 2( i )/ f 1( i )#, in the BM limit the binary col-
lision model leads to the same results forrX,X8 as the HO
model. This is not surprising, since in the BM limit only th
linear terms in the expansion of the original nonlinear int
action Hamiltonian~18! contribute to the reduced densit
matrix. In order to obtain different dynamics it is necessa
to find such an equation, derived from this binary collisi
model, which is true in general, not only in the BM limi
Applying the path integral approach outside this limit is pr
hibitively difficult; we need a different approach.

B. The quantum Langevin equation

We will derive an equation of motion for the first deriva
tive of the momentum operator of the Brownian particle. T
derivation will be analogous to that in Sec. III, except th
we will work with operators instead of dynamical variable
Starting with the Hamiltonian~18!, the five equations for the
observables are

L̂
˙

x,i5v i sin~2piX̂!L̂z,i , ~68!

L̂
˙

y,i52v i cos~2piX̂!L̂z,i , ~69!

L̂
˙

z,i5v i@cos~2piX̂!L̂y,i2sin~2piX̂!L̂x,i #, ~70!

X̂
˙

5
P̂

M
, ~71!

P̂
˙

52(
i 51

N

2pi L̇̂z,i . ~72!
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As in the classical case, Eq.~72! is an expression of conse
vation of momentum. Taking the second derivative ofL̂z,i ,
after some algebra, we obtain@19#

L̂
¨

z,i1v i
2L̂z,i52

v i pi

M
$B̂W i•L̂W i ,P̂%[ f̂ i~ t !. ~73!

Then after solving forL̂z,i , calculatingL̂
˙

z,i , and substituting
in Eq. ~72!, we arrive at@19#

P̂
˙

~ t !5E
0

t

(
i

2v i pi
2

M
$B̂W i•L̂W i ,P̂%cos@v i~ t2t8!#dt8

2(
i

2pi L̂
˙

z,i ,h~ t !, ~74!

where

L̂
˙

z,i ,h52v i L̂z,i~0!sin~v i t !1v i$cos@2piX̂~0!#L̂y,i~0!

2sin@2piX̂~0!#L̂x,i~0!%cos~v i t !. ~75!

Equation~74! is exact. It is of the form

P̂
˙

~ t !5E
0

t1

2 H ĝ~ t2t8!,
P̂

M J dt81F̂~ t !, ~76!

which is not quite the form of a GLE. The kernelĝ(t2t8) is
the operator

ĝ~ t2t8!5(
i

4v i pi
2B̂W i•L̂W i~ t8!cos@v i~ t2t8!#, ~77!

and

F̂~ t !52(
i

2pi L̂
˙

z,i ,h~ t !. ~78!

As in the classical case, we can show that in the limitpi

→0, B̂W i•L̂W i is essentially independent of time, and Eq.~74!
takes the form@19#

P̂
˙

~ t !5E
0

t

(
i

4v i pi
2

M
B̂W i•L̂W icos@v i~ t2t8!# P̂dt8

2(
i

2piL̂
˙

z,i ,h~ t !, ~79!

or

P̂
˙

~ t !5E
0

t

ĝ~ t2t8!
P̂

M
~ t8!dt81F̂~ t !. ~80!

In this equationĝ(t2t8) is still an operator. To have a BM
process~in the sense of a GLE! we need to approximate
ĝ(t2t8) with a number. That can be done by averaging
above equation with respect to the following time-depend
Hamiltonian from linear response theory:

Ĥ~ t !5Ĥ02 f ~ t !X̂, ~81!
e
t

whereĤ0 is Hamiltonian~18! and f (t) perturbs the system
off equilibrium:

f ~ t !5H 0 if t,0

f ~ t !Þ0 otherwise.
~82!

Averaging based onĤ(t) to first order inf leads to the equa
tion @19#

^P̂
˙

~ t !&5E
0

t K (
i

4v i pi
2

M
B̂W i•L̂W icos@v i~ t2t8!# P̂~ t8!L dt8

1 f ~ t !, ~83!

which we will write as

^P̂
˙

~ t !&5E
0

t K ĝ~ t2t8!
P̂

M
~ t8!L dt81 f ~ t !. ~84!

In order to be able to approximate the above equation to
convenient form of a GLE, to which the fluctuation
dissipation theorem could be applied, the following must
true:

K ĝ~ t2t8!
P̂

M
~ t8!L '^ĝ~ t2t8!&K P̂

M
~ t8!L . ~85!

In Appendix A we prove that, in the BM limit, this is indee
the case. Thus, in the BM limit, Eq.~84! takes the form of a
GLE:

^P̂
˙

~ t !&'E
0

t

^ĝ~ t2t8!&K P̂

M
~ t8!L dt81 f ~ t !. ~86!

Although Eq.~86! looks just like the corresponding clas
sical GLE, the two equations differ because the classical
quantum averages ofg differ. That is not the case with the
g ’s in the classical and quantum GLE’s obtained from t
HO model; in that case the two are identical.

Is F̂(t) a proper ‘‘random force’’ operator? In Appendi
B we outline the proof of the following results:

^F̂~ t !&50, ~87!

^B̂W i•L̂W i&5

(
mi52 l i

l i

mie
2bv imi

(
mi52 l i

l i

e2bv imi

5
f 2~ i !

f 1~ i !
, ~88!

1
2 @^F̂~ t !F̂~0!&1^F̂~0!F̂~ t !&#

52(
i

2pi
2v i

2 f 2~ i !

f 1~ i !
cothS bv i

2 D cos~v i t !. ~89!

Note that Eq.~88! shows that the quantityf 2( i )/ f 1( i ) in the

kernel ~63! is in fact ^B̂W i•L̂W i&. Hence,

^ĝ~ t2t8!&5(
i

4v i pi
2 f 2~ i !

f 1~ i !
cos@v i~ t2t8!#. ~90!
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Taking the high temperature limit,b→0, or the limit\→0
(\ being implicit in all of our equations!, and using

lim
x→0

coth~x!5
1

x
~91!

in Eq. ~89!, we obtain the quantum-mechanical analog of
classical fluctuation-dissipation theorem:

lim
\b→0

1

2
@^F̂~ t !F̂~0!&1^F̂~0!F̂~ t !&#52kT^ĝ~ t !&,

~92!

which is evident from a comparison with Eq.~53!.
Thus, Eq.~74! is a quantum ‘‘Langevin’’ equation, corre

sponding to the classical equation~30!. After averaging, as in
the classical case, we could impose on it conditions un
which it would converge to an ordinary Langevin equati
describing a Markovian process@19#, thus showing that our
model can describe ‘‘standard’’ BM in both classical a
quantum regimes.

V. LINEAR RESPONSE THEORY

We consider a perturbation from equilibrium driven by
small forcef (t) which vanishes fort,0,

t,0: f ~ t !50,

t>0: f ~ t !Þ0. ~93!

Following Kubo @20#, we start from the Hamiltonian

Ĥ~ t !5Ĥ01Ĥ8~ t !, ~94!

where

Ĥ05
P̂2

2M
1(

i
v i B̂

W
i•L̂W i ~95!

and

Ĥ8~ t !52 f ~ t !X̂. ~96!

The density operator

r̂~ t !5 r̂eq1dr̂~ t ! ~97!

satisfies

i
d

dt
r̂~ t !5@Ĥ~ t !,r̂~ t !#

5@Ĥ01Ĥ8~ t !,r̂eq1dr̂~ t !#

>@2 f ~ t !X̂,r̂eq#1@Ĥ0 ,dr̂~ t !# ~98!

to first order inf, with solution

dr̂~ t !5 i E
0

t

f ~ t8!e2 iĤ 0(t2t8)@X̂,r̂eq#e
iĤ 0(t2t8)dt8. ~99!

Since^P̂&eq is zero, after some algebra we obtain@19#
e

er

^P̂~ t !&5
1

Z
Tr$dr̂~ t !P̂%5 i E

0

t

f ~ t8!^@ P̂H~ t2t8!,X̂#&eqdt8,

~100!

whereP̂H is the operatorP̂ in the Heisenberg picture.
Defining the response functionx(t2t8) by

^X̂~ t !&5E
0

t

f ~ t8!x~ t2t8!dt8 ~101!

and using

^P̂~ t !&5M
d

dt
^X̂~ t !& ~102!

together with Eq.~100!, we obtain@19#

^X̂~ t !&5E
0

t

i f ~ t8!^@X̂H~ t2t8!,X̂#&eqdt8, ~103!

and from the definition~101! we conclude that

x~ t2t8!5 i ^@X̂H~ t2t8!,X̂#&eq . ~104!

Specializing to the case

f ~ t !5kd~ t !, ~105!

wherek is a constant, we have

^X̂~ t !&5kx~ t !, ~106!

and using our earlier results we find@19#

M ^X̂
¨
~ t !&5E

0

t

dt8^ĝ~ t2t8!&M ^X̂
˙
~ t8!&1 f ~ t ! ~107!

or

Mkẍ~ t !5E
0

t

dt8^ĝ~ t2t8!&Mkẋ~ t8!1kd~ t !, ~108!

which can be Fourier transformed to

2Mv2x̃~v!52 ivM ^g̃̂~v!&x̃~v!11. ~109!

Hence,

x̃~v!5
1

M @2v21 iv^g̃̂~v!&#
, ~110!

which we write in the form

x̃~v!5x̃8~v!1 i x̃9~v!, ~111!

where

x̃8~v!5
21

M @v21^g̃̂~v!&2#
, ~112!
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x̃9~v!5
2^g̃̂~v!&

M @v31v^g̃̂~v!&2#
. ~113!

Defining

C1~ t !5^X̂~ t !X̂~0!&eq , ~114!

and using the relation@15#

x̃9~v!5 1
2 ~12e2bv!C̃1~v!, ~115!

we find

C1~ t !52
1

pME
2`

`

dv
^g̃̂~v!&

M @v31v^g̃̂~v!&2#

e2 ivt

12e2bv
.

~116!

From C1(t) we can then calculate@15#

CPX~ t !5^P̂~ t !X̂~0!&eq5M
]

]t
^X̂~ t !X̂~0!&eq , ~117!

CXP~ t !5^X̂~ t !P̂~0!&eq52M
]

]t
^X̂~ t !X̂~0!&eq ,

~118!

CPP~ t !5^P̂~ t !P̂~0!&eq52M2
]2

]t2
^X̂~ t !X̂~0!&eq .

~119!

These are all the correlation functions needed to describ
stationary Gaussian process, which is the limiting case of
model in the BM limit, where it becomes equivalent to t
linear system described by the HO model with linear dam
ing @15,21#.

It is interesting to compare the results of this model w
those of the HO model of Caldeira and Leggett@12,15# de-
scribed in Sec. I. Their Hamiltonian leads to a GLE of t
form ~31! in both classical and quantum cases, with

gHO~ t2t8!52(
i 51

N ci
2

miv i
2
cos@v i~ t2t8!#, ~120!

which compares with ourĝ in the BM limit, given by Eq.
~90!. In the same limit, the equilibrium properties of a sy
tem are described in both models by Eq.~62! for r̂X,X8 , with
the corresponding kernels~66! and~63!. Thus, all differences
between the two models are in the kernelsKHO and K at
equilibrium and in the kernelsgHO and g that enter linear
response theory. We have already shown that, if we make
coefficientsci in KHO temperature dependent,KHO andK can
be made equal. What about the kernelsgHO andg? Compar-
ing Eqs.~120! and ~90!, we see that equality of theg ’s is
guaranteed by the same condition, Eq.~67!, which guaran-
tees equality of theK ’s. In the BM limit, then, the two mod-
els can be mapped onto one another: they are equivale
equilibrium and within linear response theory.
a
ur

-

he

at

VI. CONCLUSIONS

We have developed a binary collision model for quantu
Brownian motion and we have compared it to the stand
harmonic oscillator model. Unlike the HO model, our mod
allows nonlinear coupling between system and bath
could be useful in modeling processes involving stro
system/bath interactions. Outside the BM limit, the bina
collision model contains possible dynamics that could not
produced by the HO model, even in principle.

We have proved the equivalence of the two models in
BM limit. In this limit the equilibrium reduced density ma
trices derived from the two models can be mapped onto e
other, provided the coupling coefficients in the HO mod
are temperature dependent. Thus, this model provides a
ternative way to calculate the properties of quantum B
There may be numerical advantages to using it, since e
bath mode is associated with a spin—a few-level system
rather than with an oscillator.

An important feature of the model is its applicability t
fermionic as well as bosonic baths. Such baths are q
common; an example is the electron gas in metals. Ko
@15,22# developed a model for metal impurities interactin
with the electron gas; in certain limits the Kondo proble
can be treated as a bosonic bath problem@15#, in general not.
In the binary collision model a fermionic bath represents
particular case of dissipative environment of spin-1/2 angu
momenta. The fermionic nature of the bath is unimportan
the BM limit, but may have consequences outside that li
@23#.

Finally, the binary collision model is simple and physica
Generalizations of it are easy to imagine and may be att
tive choices for modeling other problems of quantum dis
pation.
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APPENDIX A

In this Appendix we prove that in the BM limit Eq.~85!
holds true. In order to calculate the appropriate aver
quantities we need the diagonal matrix elements of the th
mal density operatorr̂ for the Hamiltonian~in the case of a
linear perturbation!:

Ĥ~ t !5
P̂2

2M
2 f ~ t !X̂1(

i
v i B̂

W
i~X̂!•L̂W i[T̂2 f X̂1V̂.

~A1!

Since on the right-hand side of Eq.~85! the leading order
contribution to the average ofP̂ is in first order inf, we need
to consider the average ofĝ to zeroth order inf only, so that
the whole product remains linear inf. To avoid potential
difficulties with the fact that for free BM the density operat
corresponding to the Hamiltonian~A1! is not bounded, we
will work with its diagonal elements in coordinate spac
thus making the case ofX→` irrelevant. Using the eigen
vectors ofV̂(X̂) as basis vectors, written asun(X)&, we need
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~A2!
t

q.

n
h

e-

s-

gn.
of
Multiplying N21 times by unity inside the matrix elemen
we obtain

^X,n~X!ue2bĤ(t)uX,n~X!&

5 lim
N→`

E dX1(
n1

•••E dXN21

3 (
nN21

)
j 50

N21

^Xj 11 ,nj 11~Xj 11!u

3e2(b/N)T̂e(b/N) f X̂e2(b/N)V̂uXj ,nj~Xj !&,

~A3!

where

e2(b/N)V̂uXj ,nj~Xj !&5uXj ,nj~Xj !&e
2(b/N)V(nj ). ~A4!

It is important to note thatV(nj ) does not depend onXj , as
it is the energy of interactionrelative to the orientation of the
vectorBW i . Thus,

^Xj 11 ,nj 11ue2(b/N)T̂e(b/N) f X̂e2(b/N)V̂uXj ,nj&

5ANM

2pb
e2(NM/2b)(Xj 112Xj )

2
e(b/N) f Xj

3e2(b/N)V(nj )^nj 11unj&, ~A5!

and

^X,nue2bĤ(t)uX,n&

5 lim
N→`

S NM

2pb D N/2E dX1(
n1

•••E dXN21

3 (
nN21

expS 2 (
j 50

N21
NM

2b
~Xj 112Xj !

21 (
k50

N21
b

N
f XkD

3expS 2 (
l 50

N21
b

N
V~nl !D )

m50

N21

^nm11unm&. ~A6!

Let us consider the elements^nj 11(Xj 11)unj (Xj )& and ex-
pand:

^nj 11~Xj 11!unj~Xj !&'^nj 11~Xj 11!unj~Xj 11!&

1^nj 11~Xj 11!unj8~Xj 11!&dX

1 1
2 ^nj 11~Xj 11!unj9~Xj 11!&d2X.

~A7!
In B̂W i•L̂W i , X̂ always appears multiplied bypi , so we have
nj8(X)}pi , etc. The first term on the right-hand side of E
~A7! is dnj 11 ,nj

. Consider the second term:~1! If nj 11

5nj , we may assume that^nj 11unj8&50; that amounts to
assigning a phase factor to each eigenvector.~2! If nj 11

Þnj , the term^nj 11unj8& is proportional topidX. The last

term is of orderO(pi
2d2X). Thus,

^nj 11~Xj 11!unj~Xj !&'dnj 11 ,nj
1~12dnj 11 ,nj

!O~pidX!

1O~pi
2d2X!,

and

)
j 50

N21

^nj 11unj&'@dn,nN21
1~12dn,nN21

!O~pidX!

1O~pi
2d2X!#•••@dn1 ,n1~12dn1 ,n!

3O~pidX!1O~pi
2d2X!#. ~A8!

Consider the path for whichnj5nj 11 , ; j P@0, N21#. For
this particular path we have

)
j 50

N21

^nj 11unj&'11Npi
2d2X1N~N11!pi

4~d2X!21•••'1,

~A9!

since pi→0 and dX}N21/2. We see that terms of eve
power of pidX make a negligible contribution to the pat
integral.

Now consider a path for which there is a mismatch b
tween somenj 11 and nj , say at j 5k. Such a path will
contribute to the path integral with

~A10!

To zeroth order inf this contribution is zero because rever
ing the path would lead to the interchange ofXk11 andXk ,
which means the same contribution but with opposite si
The same is true for any term containing an odd power
pidX.
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Hence, to zeroth order inf, the only nonvanishing contri
bution to the path integral for a givenX comes from the path
for which all unj& ’s are the same, that is,unj&[un&,; j . For
this path,

)
j 50

N21

^nj 11~Xj 11!unj~Xj !&' )
j 50

N21

dnj 11 ,nj
, ~A11!

and therefore

^X,nue2bĤ(t)uX,n&5 lim
N→`

S NM

2pb D N/2E
X

X

DXt

3expF2E
0

b

dtS M

2
Ẋ2~t!

2 f X~t! D Ge2bV(n), ~A12!

where we have used

(
j 50

N21
MN

2b
~Xj 112Xj !

25 (
j 50

N21

e
M

2 S Xj 112Xj

e D 2

'E
0

b

dt
M

2
Ẋ2~t!, ~A13!

etc.
We will write

ĝ[(
i

Âi , ~A14!

where the definition ofÂi ~with eigenvaluesAi) is obvious.
Starting from the Schwarz inequality

U K S (
i

Âi2ĀD P̂~ t8!L U2

<K S (
i

Âi2ĀD 2L ^P̂2~ t8!&,

~A15!

where

Ā[K (
i

Âi L , ~A16!

we have

K S (
i

Âi2ĀD 2L 5K (
i

Âi(
j

Â j L 2K (
i

Âi L 2

,

~A17!

with

K (
i

Âi(
j

Â j L 5
1

ZE dX(
n(X)

K X,n~X!U(
i

Âi(
j

Â j

3e2bĤUX,n~X!L
5

1

Z (
n

S (
i

Ai D
n
S (

j
Aj D

n

e2bV(n)
3const, ~A18!

whereZ is the partition function, such that

(
n

e2bV(n)3const5Z. ~A19!

In Eq. ~A18! the sum overi ~or j ) includes a large number o
the eigenvaluesAi , distributed according to thermal equilib
rium for the bath. Therefore, we can apply the law of lar
numbers and write

S (
i

Ai D
n

'S (
i

Ai D , ~A20!

which means that the sums are approximately independe
the staten. Hence, from Eqs.~A18!, ~A19!, and ~A20!, it
follows that

K (
i

Âi(
j

Â j L 'S (
i

Ai D 2

. ~A21!

Similarly,

K (
i

Âi L 'S (
i

Ai D . ~A22!

Therefore, Eq.~A17! becomes

K S (
i

Âi2ĀD 2L '0; ~A23!

hence,

U K S (
i

Âi2ĀD P̂~ t8!L U2

'0, ~A24!

or

K (
i

Âi P̂~ t8!L 'K (
i

Âi L ^P̂~ t8!&, ~A25!

and the proof is complete.

APPENDIX B:

Here we outline the proof of several important results
Sec. IV. For details the reader is referred to@19#. First we

calculate ^B̂W i•L̂W i&, which is needed for the fluctuation
dissipation theorem of the second kind. We will work aga

in the basis set of eigenvectors of( i B̂
W

i•L̂W i :
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^B̂W i•L̂W i&5

E dX(
nW (X)

^X,nuB̂W i•L̂W ie
2bĤuX,n&

E dX(
nW (X)

^X,nue2bĤuX,n&

5

(
ni

~BW i•LW i !ni
e2bv i (B

W
i•LW i )ni

(
ni

e2bv i (B
W

i•LW i )ni

, ~B1!

where

~BW i•LW i !ni
[@cos~2piX!Lx,i1sin~2piX!Ly,i #ni

~B2!

should not depend onX, as explained earlier. Therefore, w
can chooseX50. In that case,

~BW i•LW i !ni
[~Lx,i !ni

[mi , ~B3!

where themi ’s are the possible values ofLx,i . Hence, in Eq.
~B1! we can sum over themi ’s, arriving at

^B̂W i•L̂W i&5

(
mi52 l i

l i

mie
2bv imi

(
mi52 l i

l i

e2bv imi

5
f 2~ i !

f 1~ i !
. ~B4!
To calculate the equilibrium average of the random fo
operator we need

^F̂~ t !&5(
i

2piv i sin~v i t !^L̂z,i~0!&2(
i

2piv i cos~v i t !

3^cos@2piX̂~0!#L̂y,i~0!&1(
i

2piv i cos~v i t !

3^sin@2piX̂~0!#L̂x,i~0!&. ~B5!

It is easy to prove that@19#

^L̂z,i~0!&5^cos@2piX̂~0!#L̂y,i~0!&

5^sin@2piX̂~0!#L̂x,i~0!&50. ~B6!

Thus,

^F̂~ t !&50. ~B7!

We now consider Eq.~89!, where
^F̂~ t !F̂~0!&52(
i , j

4pipjv iv j sin~v i t !^cos@2pjX̂~0!#L̂z,i~0!L̂y, j~0!&1(
i , j

4pipjv iv j sin~v i t !

3^sin@2pjX̂~0!#L̂z,i~0!L̂x, j~0!&1(
i , j

4pipjv iv j^cos@2piX̂~0!#cos@2pjX̂~0!#L̂y,i~0!L̂y, j~0!&

3cos~v i t !2(
i , j

4pipjv iv j^cos@2piX̂~0!#sin@2pjX̂~0!#L̂y,i~0!L̂x, j~0!&

3cos~v i t !2(
i , j

4pipjv iv j^sin@2piX̂~0!#cos@2pjX̂~0!#L̂x,i~0!L̂y, j~0!&

3cos~v i t !1(
i , j

4pipjv iv j^sin@2piX̂~0!#sin@2pjX̂~0!#L̂x,i~0!L̂x, j~0!&cos~v i t !. ~B8!

After calculating each of the six sums above separately@19#, we arrive at

^F̂~ t !F̂~0!&52(
i

2pi
2v i

2 f 2~ i !

f 1~ i !
cothS bv i

2 D cos~v i t !1 i(
i

2pi
2v i

2 sin~v i t !
f 2~ i !

f 1~ i !
. ~B9!

In a similar fashion we calculatêF̂(0)F̂(t)& to be

^F̂~0!F̂~ t !&52(
i

2pi
2v i

2 f 2~ i !

f 1~ i !
cothS bv i

2 D cos~v i t !2 i(
i

2pi
2v i

2 sin~v i t !
f 2~ i !

f 1~ i !
, ~B10!

and therefore

1
2 @^F̂~ t !F̂~0!&1^F̂~0!F̂~ t !&#52(

i
2pi

2v i
2 f 2~ i !

f 1~ i !
cothS bv i

2 D cos~v i t !. ~B11!
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